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RESUMO

Leandro, J. J. G. Deepfake: explorando técnicas de detecção de manipulação
digital de imagens de faces. 2022. 78p. Monografia (MBA em Inteligência Artificial e
Big Data) - Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos, 2022.

O presente documento aborda o tema de detecção de manipulação digital de imagens
de faces, com ênfase na técnica Deepfake, um tópico relacionado à área de Inteligência
Artificial. Avanços recentes em tecnologias de geração de Deepfake, catalizadas pelo poder
de difusão de notícias falsas das redes sociais e a profusão de dispositivos móveis, resultam
numa combinação com consequências preocupantes para todas as escalas da sociedade
moderna. A maioria dos modelos estado da arte apresenta capacidade da ordem de
milhões de parâmetros. Neste trabalho, técnicas para detecção de Deepfake, candidatas
à implantação em dispositivos móveis, foram investigadas. Para tanto, foi proposta uma
extensão da arquitetura Meso-4 por um bloco incorporando o operador Filtro de Sobel, com
parâmetros não-treináveis. Três configurações foram exploradas em um Estudo de Ablação
sobre a base de dados Deepfake, conforme o paradigma de Aprendizado Supervisionado. O
desempenho foi estimado por métricas usuais em problemas de classificação. Os resultados
obtidos foram validados estatisticamente pelo Teste de McNemar. A latência e consumo
de memória do modelo foram avaliados no dispositivo móvel. A arquitetura proposta
MesonetSobelConcat produziu os melhores resultados, com acurácia binária em 0, 961 e
AUC em 0, 991. O tempo médio de inferência no dispositivo medido resultou em torno de
108 milissegundos por frame, enquanto o consumo total de memória foi de quase 33 Mb. Os
resultados obtidos indicam que a MesonetSobelConcat apresenta desempenho superior à
Meso-4 na detecção de Deepfake com taxas satisfatórias de acerto, mostrando-se também
viável para implantação em dispositivos embarcados e móveis, com recursos limitados de
hardware.

Palavras-chave: Inteligência Artificial. Visão Computacional. Redes Neurais Convolucio-
nais. Deepfake. Dispositivos móveis.





ABSTRACT

Leandro, J. J. G. Deepfake: exploring techniques for the detection of digital
manipulation in faces images. 2022. 78p. Monograph (MBA in Artificial Intelligence
and Big Data) - Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos, 2022.

This document addresses the theme of detecting manipulation in digital images of faces,
with an emphasis on the Deepfake technique, a topic related to the field of Artificial
Intelligence. The recent progress in technologies for the generation of Deepfake, catalyzed
by the power of fake news diffusion in social media, besides the profusion of mobile devices,
result in a combination leading to major concerns for every scale in modern society. Most
state-of-the-art models present a capacity in the order of millions of parameters. In the
present work, candidate techniques for detecting Deepfake on mobile devices have been
investigated. To that end, an extension to the Meso-4 architecture has been proposed
by incorporating the Sobel Filter block with non-learnable parameters. According to
the Supervised Learning paradigm, three settings have been explored under an Ablation
Study over the dataset Deepfake. Usual metrics for classification problems have been
used to estimate the model performance. The McNemar’s Test has statistically validated
the obtained results. Latency and memory footprint have been evaluated on device. The
proposed architecture MesonetSobelConcat yielded the best results with a binary accuracy
of 0.961 and AUC of 0.991. The average time measured for inference on device was about
108 milliseconds, while the overall memory footprint measured was close to 33 Mb. The
obtained results indicate that the MesonetSobelConcat overperforms Meso-4 in detecting
Deepfake with reasonable true positive rates and has shown to be feasible for deployment
in embedded and mobile devices under limited hardware resources.

Keywords: Artificial Intelligence. Computer Vision. Convolutional Neural Networks.
Deepfake. Mobile devices.
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1 INTRODUÇÃO

O recente advento de técnicas baseadas em Aprendizado Profundo (Deep Learning)
para manipulação de imagens e geração de imagens falsas tem despertado o interesse do
público em geral. Deve-se esse interesse tanto ao seu potencial para fins de entretenimento
legítimo, quanto ao risco que representam, viabilizando a substituição de faces entre
pessoas para aplicações questionáveis, como construção de farsas, notícias falsas, fraudes
financeiras e pornografia falsa (TOLOSANA et al., 2020).

Essa ameaça tem fomentado o interesse da comunidade em desenvolver técnicas
para Detecção de Deepfake e manipulação facial em imagens estáticas e vídeo. Dentre suas
principais motivações, figuram os efeitos devastadores consequentes ao compartilhamento
de mídia falsa em redes sociais e plataformas de imagem e vídeo, livremente acessáveis
por dispositivos móveis.

O presente projeto de pesquisa propõe a exploração, eventual simplificação e/ou
aperfeiçoamento de técnicas e arquiteturas, tais como Mesoscopic Features (AFCHAR et
al., 2018) aliadas a Redes Neurais Convolucionais (CNN ) (ROSSLER et al., 2019), para
detecção de imagens manipuladas e/ou sintéticas, considerando sua possível aplicação em
dispositivos com restrições de recursos, como telefones celulares.

A popularização e o livre acesso à tecnologia de geração de imagens falsas, mediante
redes neurais adversariais (GAN ), permitem a qualquer pessoa a geração de imagens
realistas de faces de indivíduos que não existem ou mesmo a substituição da identidade
de indivíduos em imagens estáticas ou sequências de vídeo, uma técnica conhecida como
Deepfake (TOLOSANA et al., 2020).

Por um lado, essa tecnologia tem beneficiado setores como entretenimento, cinema,
efeitos visuais (VFX) e captura de movimento com marcadores. Recentemente, foi am-
plamente divulgada a contratação do influenciador digital conhecido pelo pseudônimo
de Shamook como artista sênior pela ILM (Industrial Light and Magic), uma divisão
de efeitos especiais da LucasFilm. Uma semana depois da veiculação de um episódio
de The Mandalorian, objeto de duras críticas pela qualidade dos efeitos de Computa-
ção Gráfica na apresentação do rosto da personagem Luke Skywalker, Shamook lançou
sua versão da mesma cena aperfeiçoada com tecnologia de Deepfake, tornando-se viral
imediatamente (BBC-NEWS, 2021).

Por outro lado, tais técnicas de geração fotorrealistas também constituem ameaça
para a sociedade de modo geral, haja vista seu uso potencial para manipulação da identidade
de indivíduos, visando à geração de evidências forjadas, campanhas políticas e publicitárias
maliciosas, entre outros. O emprego de Deepfake combinado a campanhas de desinformação
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pode até mesmo surtir efeitos indesejáveis às eleições (QI et al., 2020). Os prejuízos podem
variar em escala, desde indivíduos, organizações e grupos até a sociedade em geral, assim
como variar em velocidade, partindo de efeitos negativos imediatos a reputações, até a
lenta corrosão da confiança pela circulação de pseudoevidências em imagens e vídeo. Esse
perigo à integridade da informação pode acarretar consequências sobre a privacidade,
aspectos legais, política, segurança e a erosão potencial da confiança.(CHU et al., 2020)

Como agravante, considere a ubiquidade dos dispositivos móveis, como smartphones,
permeando todos os aspectos do nosso quotidiano (WANG et al., 2018) e facilitando a
disseminação desse tipo de conteúdo. Inferência de modelos de Aprendizado Profundo
nesse tipo de dispositivo apresentam vantagens em relacão à Computação em Nuvem,
como (i) redução da banda de comunicação, (ii) redução de custo de computação na
nuvem, (iii) redução do tempo de resposta e (iv) privacidade de dados (DENG, 2019).

Diante do exposto, seriam desejáveis modelos de Inteligência Artificial para detecção
de Deepfake, capazes de atuar em dispositivos de recursos limitados como telefones
celulares. Não obstante essa relevância, são muitos os desafios para conciliar a demanda de
recursos necessários para inferência com redes neurais profundas e os recursos limitados em
smartphones, uma vez que o desempenho de um modelo nesses dispositivos deve considerar
não apenas a acurácia, mas também uma combinação de memória, latência e consumo de
energia (DENG, 2019).

Neste projeto, pretende-se investigar arquiteturas de redes profundas para detecção
de Deepfake viáveis para ambientes com recursos limitados.

Espera-se, outrossim, identificar ou adaptar arquiteturas existentes para detecção
de imagens falsas e/ou manipuladas, com potencial para uso em dispositivos móveis. Em
geral, a produtização de modelos de Deep Learning em dispositivos com recursos limitados
constitui-se num grande desafio, uma vez que esses modelos costumam ser representados
com milhões de parâmetros, demandando muito dos recursos de memória e processamento
para inferência.

Diante do exposto, a seguinte questão de pesquisa emerge, a qual norteará este
projeto:

Q1 “Atualmente, existem modelos para detecção de imagens e/ou vídeos falsos ou
manipulados de face com potencial para implantação e produtização em telefones celulares?”

Definem-se os seguintes objetivos para o desenvolvimento deste trabalho, em busca
de resposta à questão de pesquisa:

• Explorar modelos e técnicas de treinamento em laboratório para a tarefa de detecção
de imagens e vídeos falsos de face, avaliando sua viabilidade para dispositivos com
recursos limitados de hardware, em termos de números de parâmetros e tamanho.
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Esse objetivo está relacionado à questão de pesquisa Q1.

• Analisar o desempenho obtido em relação aos modelos estado da arte em benchmarks.
Esse objetivo está relacionado à questão de pesquisa Q1.

Pretende-se obter um modelo, ainda que adaptado, capaz de alcançar desempenho
competitivo e passível de implantação em dispostivos com recursos limitados.
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2 FUNDAMENTOS TEÓRICOS

Neste capítulo, são discutidos os impactos de Deepfake, listados tipos de ataque,
descritas técnicas de criação e detecção, apresentadas as principais bases de dados e
modelos estado da arte para detecção, assim como modelos candidatos para inferência
em dispositivos com recursos limitados. Ainda, são introduzidos tópicos relevantes dos
fundamentos das áreas de Redes Neurais e Aprendizado Profundo, essenciais ao contexto
de Deepfake.

2.1 Deepfake

Deepfake é um conteúdo falso gerado por Inteligência Artificial, que parece ver-
dadeiro sob o escrutínio de olhos humanos. Esse termo é derivado da combinação dos
termos Deep Learning e Fake, em alusão à geração de conteúdo por redes neurais ar-
tificiais (MIRSKY; LEE, 2021). A manipulação de imagens de humanos está entre as
aplicações mais frequentes, em que a mídia sintética resultante é produto da substitui-
ção de um rosto numa imagem ou video existente pelo de outra pessoa (ZHANG et al.,
2021), consequentemente exibindo uma reencenação com conteúdo fictício, como se fosse
real (WEERAWARDANA; FERNANDO, 2021). Vale salientar que Deepfake não deve
ser confundido com Aprendizado de Máquina Adversarial1, posto que o objetivo deste
último é o de enganar máquinas, enquanto o objetivo do primeiro é o de enganar seres
humanos (MIRSKY; LEE, 2021).

Essa tecnologia surgiu em 2017, quando um usuário do portal Reddit2, sob o
codinome Deepfakes (ZHANG et al., 2021), utilizou uma fita de vídeo pública, motores de
busca de imagens e o framework Tensorflow3 para produzir videos pornográficos forjados
com faces de celebridades (MIRSKY; LEE, 2021) e publicá-los em portais de mídia
social (WEERAWARDANA; FERNANDO, 2021). No ano seguinte, o portal Buzzfeed4

lançou um video Deepfake, produzido com o software FakeApp do usuário do Reddit, em
que o ex-presidente Barack Obama fazia uma palestra a respeito e levantava questões
concernentes a roubo de identidade, imitações e a propagação de desinformação em mídias
sociais (MIRSKY; LEE, 2021).

Aplicações criativas e produtivas de Deepfake são realidade, por exemplo, dubla-
gem artificial de filmes estrangeiros (ROETTGERS, 2019), reanimação de personagens
históricas para fins educacionais e modelos digitais personalizadas para campanhas de

1 Adversarial Machine Learning
2 https://www.reddit.com/
3 http://www.tensorflow.org/
4 https://www.buzzfeed.com/

https://www.reddit.com/
http://www.tensorflow.org/
https://www.buzzfeed.com/


32

moda (DIETMAR, 2019). Ainda, frequentemente vídeos forjados retratam situações cômi-
cas, em que um indivíduo aparece atuando de uma maneira que normalmente não faria.
Apesar do fim aparentemente ingênuo, tais reencenações podem acarretar constrangimento
ao seu alvo. Algumas aplicações extrapolam os limites da comédia, assumindo um viés
malicioso e cobrindo um espectro de ilicitudes que se estende desde fraudes financeiras até
videos pornográficos envolvendo celebridades (WEERAWARDANA; FERNANDO, 2021).

Os impactos sociais desse tipo de aplicação são nefastos, do que decorre uma série
de implicações legais, uma vez que infringem direitos de imagem e direitos de propriedade
intelectual, culminando com prejuízos de ordem econômica e ataque à reputação. No limite,
vídeos falsificados sobre personagens políticos podem induzir uma crise na mídia, ameaçar
a estabilidade social e a segurança nacional (ZHANG et al., 2021).

2.2 Categorias de Ataques Deepfake

Mirsky and Lee (2021) identificaram quatro categorias de Deepfake dentro do
contexto de falsificações visuais de faces humanas, a saber reconstituição5, substituição6,
edição7 e síntese8, ressaltando não haver objetivos claros de ataque relacionados às duas
últimas.

A seguir, descrevemos a categorização proposta por aqueles autores, salvo menção
contrária, seguindo sua notação e denotando por s e t as identidades de origem e alvo,
respectivamente, xs e xt como as imagens que representam aquelas identidades e xg como
a imagem gerada a partir das identidades s e t. A Figura 1 exemplifica pictoricamente a
categorização ora descrita.

2.2.1 Reconstituição

Em Deepfake por Reconstituição, a imagem de origem xs é usada para guiar a
expressão, boca, olhar, posição da cabeça ou pose do corpo na imagem alvo xt, como
detalhado na Tabela 1.

2.2.2 Substituição

Em Deepfake por Substituição, o conteúdo da imagem alvo xt é substituído pelo
conteúdo da imagem de origem xs, sob a restrição de preservar a identidiade de xs, conforme
detalhado na Tabela 2.

5 reenactment
6 replacement
7 editing
8 synthesis
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Figura 1 – Exemplos de Deepfake de faces humanas por reconstituição, substituição, edição
e síntese.

Fonte: (MIRSKY; LEE, 2021).

Tabela 1 – Deepfake por Reconstituição.

Componente Objetivo Aplicações
Expressão xs guia a expressão

em xt

Cinema, video games e mídia educacional.

Boca áudio ou boca em xs

guia a boca em xt

Dublagem para outro idioma e edição.

Olhar direção dos olhos e
globos oculares em
xs guiam os corres-
pondentes em xt

Correção de fotografias ou manutenção do contato visual em entre-
vistas em vídeo.

Cabeça a posição da cabeça
em xs guia a corres-
pondente em xt

Frontalização de faces.

Corpo pose do corpo em xs

é transferida para o
corpo em xt

Síntese de pose humana.

Modelo de
Ataque

Imitar uma identidade, controlando suas palavras para fomentar difamação, descrédito,
desinformação, adulteração de evidências, falsas evidências, embaraço visando a chanta-
gens e imitação em tempo real.

Fonte: Elaborada pelo autor.

Nota: Categorização de Mirsky and Lee (2021).

2.2.3 Edição e Síntese

Deepfake por Edição e Síntese representam menores riscos de ataque, quando
comparadas às abordagens anteriores, portanto não foram consideradas para os estudos de
detecção elencados no levantamento de Mirsky and Lee (2021). Descrições e aplicações são
sumarizadas na Tabela 3.



34

Tabela 2 – Deepfake por Substituição.

Técnica Objetivo Aplicações
Transferência o conteúdo de xs é

transferido para xt

Na indústria da moda, a transferência de faces de modelos em
diferentes trajes.

Troca o conteúdo de xs

substitui e é guiado
por xt

Face Swap usado para criar conteúdo cômico, trocando a face de
um indivíduo pela de uma celebridade ou para anonimização, em
lugar de borramento ou pixelização.

Modelo de
Ataque

Pornografia de vingança, em que a face de uma atriz é subtituída pela da vítima, com
fins de humilhaçao, difamação ou mesmo chantagem.

Fonte: Elaborada pelo autor.

Nota: Categorização de Mirsky and Lee (2021).

Tabela 3 – Deepfake por Edição e Síntese.

Técnica Objetivo Aplicações
Edição os atributos da ima-

gem alvo xt são alte-
rados, removidos ou
acrescentados

Mudança de características como roupas, cabelos, pelos faciais,
idade, peso, beleza e etnia.

Síntese uma imagem xg é cri-
ada sem um alvo xt

técnicas de síntese produzem faces e corpos sem direitos autorais
para cinema e jogos, mas também podem ser usadas para criar
personagens falsas.

Fonte: Elaborada pelo autor.

Nota: Categorização de Mirsky and Lee (2021).

2.3 Criação de Deepfake

O processo de geração de uma imagem Deepfake xg por Reconstituição ou Subs-
tituição, de forma geral, pode ser organizado em três ou quatro estágios. Zhang et al.
(2021) reconhecem três estágios nesse processo, a saber (i) Reconhecimento de Faces, (ii)
Substituição de Faces e (iii) Pós-processamento de faces, enquanto que Mirsky and Lee
(2021) dividem o processo em (1) Detecção e recorte de face, (2) Extração de representações
intermediárias, (3) Geração guiada de uma face por outra face e (4) Fusão da face gerada
sobre a imagem alvo, como exibido na Figura 2.

2.3.1 Detecção e Recorte de Faces

Inicialmente, algum sistema de detecção de faces pode ser utilizado para localizar
a face na imagem, determinar seu tamanho e efetuar seu recorte.

2.3.2 Extração de Representações Intermediárias

Sobre a região localizada, operações tradicionais de Processamento de Imagens, tais
como conversão para níveis de cinza, equalização de histograma, normalização, redução de
ruído e filtragens podem ser aplicadas. Por fim, vetores de características visuais, caracte-
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Figura 2 – Fluxo de Geração de Deepfake de faces humanas por reconstituição e substitui-
ção.

Fonte: (MIRSKY; LEE, 2021).

rísticas estatísticas ou características obtidas a partir de coeficientes de transformações
podem ser obtidos como representação das faces, usadas finalmente para efetuar consultas
e casamentos com padrões em bases de dados (ZHANG et al., 2021).

2.3.3 Geração Guiada De Uma Face Por Outra Face

Neste estágio, uma face original é convertida em uma face forjada alvo. Para tanto,
Deepfake utiliza tipicamente arquiteturas baseadas no modelo de Autoencoder, ilustrado na
Figura 3 capaz de reconstruir imagens de entrada e composta por uma rede codificadora
(encoder) e duas redes decodificadoras (decoder). A rede codificadora aprende os padrões
de características comuns a todas as faces humanas, a partir das imagens originais e
imagens alvo. As redes decodificadoras, por sua vez, identificam a individualidade de cada
face, aprendendo a gerar as faces originais e faces alvo separadamente (ZHANG et al.,
2021; ZI et al., 2020; LI et al., 2020).

2.3.4 Fusão Da Face Gerada Sobre A Imagem Alvo

A fim de eliminar artefatos e corrigir distorções, como diferenças de tom de pele,
diferenças de laminação, bordas da face e fundo complexo, são efetuadas operações de
pós-processamento a fim de integrar adequadamente a face gerada à imagem de fundo da
cena original (ZHANG et al., 2021).

2.4 Redes Neurais

Em sua versão simplificada, um sistema Deepfake treina uma rede neural deno-
minada autoencoder com imagens de um par de indivíduos, enquanto duas outras redes
neurais chamadas decodificadores reconstroem as imagens originais. Durante a inferência,
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os dois decodificadores trocam as faces, concluindo o processo de manipulação. Esse
conceito é ilustrado de forma simplificada na Figura 3.

Figura 3 – Criação de Deepfake usando um autoencoder e um decoder.

Fonte: (MASOOD et al., 2021).

Redes neurais artificiais são eficientes aproximadores de funções não-lineares (GO-
ODFELLOW; BENGIO; COURVILLE, 2016), que podem ser usadas para diversas tarefas
envolvendo predição e geração de conteúdo a partir de uma entrada. Essas redes são
compostas por camadas de neurônios, os quais são interligados por sinapses. No processo
de propagação progressiva9, uma entrada n-dimensional x é propagada pelas camadas
da rede e o resultado da operação é não-linearmente transformado por alguma função de
ativação, como Sigmóide, Tangente Hiperbólica ou Unidade Linear Retificada (ReLU)10.
Cada camada é ativada pela saída da camada anterior, sucessivamente, até que a úl-
tima camada produza o resultado. Uma rede neural pode ser treinada conforme algum
paradigma, como Aprendizado Supervisionado, Aprendizado Não-Supervisionado e Apren-
dizado Autossupervisionado, dentre outros. No contexto de aprendizado supervisionado,
por exemplo, uma rede neural é treinada sobre uma base de dados pareada, ou seja,
entrada e respectivo rótulo11, enquanto é minimizada uma função de perda12 diferenciável,
9 forward propagation
10 Rectified Linear Unit
11 também chamado anotação
12 loss function or objective function
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que quantifica a proximidade entre valores alvo e valores preditos, mediante o processo
denominado retropropagação13, que implementa a Regra da Cadeia para diferenciação.
Os pesos são apropriadamente atualizados por algoritmos de otimização baseados no
Gradiente Descendente, a partir do gradiente determinado no passo anterior. Uma vez
treinada, a rede aprende a aproximar a função desejada e realizar predições sobre dados
desconhecidos, uma propriedade chamada de generalização (MIRSKY; LEE, 2021).

Para tanto, algumas condições previstas pela teoria de Aprendizado de Máquina
devem ser satisfeitas: (i) o conjunto de treinamento deve ser estatisticamente representativo
da população de interesse, o que é expresso matematicamente pela condição de suas
amostras terem sido obtidas aleatoriamente a partir de uma mesma distribuição de
probabilidades, sendo então independentes e identicamente distribuídas; (ii) assume-se
alguma suposição a priori, denominada Viés Indutivo sobre o espaço de representações
para uma família de funções (Viés de Restrição) e/ou sobre a estratégia de uma hipótese
que minimize a função de perda (Viés de Preferência) (MITCHELL, 1997).

As arquiteturas mais utilizadas em Redes Neurais para geração de Deepfake
são combinações de Redes Neurais Convolucionais14, Redes Generativas Adversariais15

(WEERAWARDANA; FERNANDO, 2021), Redes Neurais Recorrentes16, Codificadores-
Decodificadores17 e arquiteturas baseads em CycleGAN e pix2pix (MIRSKY; LEE, 2021),
como ilustrado na Figura 4.

Figura 4 – Arquiteturas Básicas usadas para Geração de Deepfake de faces humanas. As
linhas representam o fluxo de dados durante treinamento (cinza) e produção
(preto). Notação: x: amostra de entrada, xg: amostra gerada, Uk: camada oculta,
En: Codificador, De: Decodificador, e = En(x): codificação ou embedding, z:
vetor aleatório (ruído), D: Discriminador, G: Gerador, Hab: Gerador de amostra
do domínio b, Hba: Gerador de amostra do domínio a, Da: Discriminador de
amostra do domínio a, Db: Discriminador de amostra do domínio b.

Fonte: (MIRSKY; LEE, 2021).

13 backpropagation
14 Convolutional Neural Networks - CNN
15 Generative Adversarial Networks - GAN
16 Recurrent Neural Networks - RNN
17 Encoder-Decoder - ED
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2.4.1 Redes Neurais Convolucionais

Em Redes Neurais Convolucionais (CNN ), aprendem-se os filtros que são deslocados
sobre tensores durante o processo de convolução, extraindo-se padrões em diferentes níveis
conceituais hierárquicos. Os pesos dos filtros aprendidos são compartilhados, permitindo a
drástica redução do número de parâmetros em relação às arquiteturas baseadas em redes
densas e o aumento dos tamanhos das redes, sem aumento em termos de quantidade de
dados para treinamento (GOODFELLOW; BENGIO; COURVILLE, 2016). Operações
da família de Pooling podem ser usadas para subamostrar ou superamostrar mapas de
ativação, viabilizando a construção de arquiteturas do tipo Codificador-Decodificador para
imagens (MIRSKY; LEE, 2021).

2.4.2 Redes Neurais Recorrentes

Redes Neurais Recorrentes18 (RNN ) são redes projetadas para lidar com dados
sequenciais e comprimento variável (MIRSKY; LEE, 2021), podendo ser usadas para
tarefas como geração de sequências, classificação de sequências e tradução de sequências,
entre outras. Essas redes possuem memória levando em conta não somente a amostra atual,
mas o estado oculto do sistema que incorpora passos anteriores para o processamento de
uma amostra atual (MURPHY, 2022). Por sua natureza, redes RNN podem ser usadas
para processar dados de vídeo e áudio. Como evoluções de RNN, as redes do tipo LSTM 19

e GRU 20(MIRSKY; LEE, 2021) estendem sua capacidade com células de memória e portas
de controle.

2.4.3 Redes Codificadoras-Decodificadoras

Redes Codificadoras-Decodificadoras21 (ED) são formadas por pelo menos duas
redes, uma conhecida como a Codificadora, ou Encoder En, e a outra como a Decodificadora,
ou Decoder De, com uma configuração tal que suas camadas estreitam-se em direção ao
centro, o que confere a essa arquitetura a propriedade de resumir a entradaDe(En(x)) = xg.
Chama-se Encoding ou Embedding a codificação obtida pela transformação En(x) = e,
dada a distribuição de X e Espaço Latente ao espaço formado por E = En(X). Quando
a topologia de uma rede neural ED é simétrica e a mesma é treinada com o objetivo
de reconstruir a entrada, ou seja De(En(x)) = x, chama-se essa rede de Autoencoder.
Em particular, se um Autoencoder aprende a distribuição a posteriori do Decoder, dado
o conjunto X, então trata-se de um tipo especial denominado Variational Autoencoder
(VAE). Este último possui a propriedade de desentrelaçar os fatores de variação no espaço

18 Recurrent Neural Networks
19 Long-Short Term Memory
20 Gated Recurrent Unit
21 Encoder-Decoder Networks
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latente, produzindo embeddings que se comportam melhor sob operações de interpolação
ou modificações (MIRSKY; LEE, 2021).

2.4.4 Redes Generativas Adversariais

Uma Rede Generativa Adversarial22 (GAN ) é um framework de treinamento
composto por duas redes, a Geradora G e a Discriminadora D, treinadas de maneira
adversarial. A rede G gera amostras falsas xg para enganar a rede D, que por sua vez
aprende a distinguir entre amostras reais (x ∈ X) e amostras falsas (xg = G(z)), onde
z ∼ N é um vetor amostrado aleatoriamente de uma distribuição normal (MIRSKY;
LEE, 2021). Durante o treinamento, a rede D busca maximizar a média do logaritmo das
probabilidades de imagens reais e do logaritmo das probabilidades invertidas de imagens
geradas falsas (Eq. 2.1) ou equivalentemente minimizar o negativo desta expressão. A rede
G busca minimizar a média do logaritmo das probabilidades invertidas das predições de
D de imagens geradas falsas (Eq. 2.2), o que equivale a minimizar o contrário do que D
busca maximizar. Como essa última função satura, quando o desempenho de G não é
satisfatório e D aprende corretamente a discriminar imagens falsas, os gradientes não são
suficientes para atualizar os pesos. Por isso, prefere-se maximizar a média do logaritmo
das probabilidade das predições de D de imagens geradas falsas, ou equivalentemente
minimizar seu negativo (BROWNLEE, 2019).

Ladv(D) = max logD(x) + log(1−D(G(z))) (2.1)
Ladv(G) = min log(1−D(G(z))) (2.2)

Em particular, cumpre destacar duas arquiteturas baseadas em GAN que são
amplamente empregadas na geração de Deepfake:

2.4.4.1 Image-to-Image Translation (pix2pix)

O framework pix2pix viabiliza transformações pareadas entre domínios. Durante
o treinamento, a rede G gera uma imagem xg dada uma imagem de contexto visual xc,
enquanto a rede D discrimina entre (x, xc) e (xg, xc). A rede G é uma U-Net, ou seja,
uma arquitetura de Encoder-Decoder com CNN (ED CNN ) e conexões residuais23 entre
En e De para preservar detalhes da entrada, permitindo a geração de conteúdo em alta
resolução (MIRSKY; LEE, 2021).

2.4.4.2 CycleGAN

O framework CycleGAN é uma evolução de pix2pix, que permite tradução de
imagens não pareadas. Duas GAN atuam num ciclo, convertendo imagens entre os domínios
22 Adversarial Neural Network
23 skip connections
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de entrada e saída, respectivamente, encorajando a consistência por meio da função de
perda de consistência de ciclo24 (Lcyc).

2.5 Funções de Perda

Uma função de perda25 estima de maneira única e global o erro incorrido na tomada
de qualquer decisão ou ação disponível, sendo a solução ótima aquela que minimiza a
função de perda (BISHOP, 2006).

Diferentes funções de perda são empregadas conforme a tarefa de interesse. Para
tarefas de classificação, em que uma rede neural estima probabilidades para as diversas
classes, comumente usa-se a função Entropia Cruzada26. Para tarefas de regressão, como é
o caso de Deepfake, funções de perda como as normas L1 e L2 são muito usadas. Uma
desvantagem dessas funções é a necessidade de amostras pareadas (MIRSKY; LEE, 2021), o
que significa que elas devem ser alinhadas. Além disso, para aplicações como Reconstituição,
em que xs encontra-se em posição diferente de xt, pode haver um deslocamento significativo,
que será altamente penalizado pela L2.

Para transformações entre imagens não-pareadas, podem-se usar funções de perda
associadas a um modelo denominado perceptual, frequentemente uma rede de reconheci-
mento de faces como a VGG. A função de perda perceptual, por exemplo, Lperc, compara
diretamente mapas de ativação em camadas escondidas daquele modelo e seu resultado
pode ser interpretado como a medida da diferença semântica entre as contrapartidas de
xg. Alternativamente, emprega-se a função perda de casamento de características27 LF M ,
que compara as saídas da última camada do modelo perceptual, portanto conceitos de
alto nível semântico. A função de perda de conteúdo28 LC, por sua vez, compara os mapas
de ativação apenas da imagem gerada xg (MIRSKY; LEE, 2021).

2.6 Detecção de Deepfake

Por um lado, dado o grau de realismo que as falsificações produzidas por Deepfake
alcançaram, sua identificação a olho nu constitui-se em tarefa deveras desafiadora. Por
outro lado, o rampante aprimoramento das tecnologias de geração de Deepfake aliado ao
seu crescente uso para fins excusos urgem o desenvolvimento de técnicas efetivas para sua
detecção (WEERAWARDANA; FERNANDO, 2021).

Com vistas a essa demanda, a academia e setores da indústria têm buscado soluções
efetivas, de maneira independente ou colaborativa, como a parceria entre a gigante Meta29

24 Cycle Consistency Loss
25 Loss Function
26 Cross Entropy
27 Feature Matching Loss
28 Content Loss
29 anteriormente Facebook
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e algumas universidades, dentre as quais MIT, University of Oxford, UC Berkeley e
University of Maryland. Dessa colaboração, resultou a criação da competição Deepfake
Detection Challenge - DFDC 30 no ano de 2020, quando apresentaram um sistema de
detecção que alcançou cerca de 82% de acurácia (WEERAWARDANA; FERNANDO,
2021). Outra iniciativa nesse sentido, foi o lançamento da competição Media Forensics
Challenge 2018 - MFC2018 31 pelo NIST.

Zheng, Zhang and Thing (2019) publicaram uma extensa revisão sobre adulteração
e sua detecção em imagens reais de maneira geral. O levantamento de Mirsky and Lee
(2021) concentrou-se em manipulações realizadas em imagens de face, segundo o qual as
técnicas de detecção podem ser agrupadas em técnicas específicas conforme artefatos ou
abordagens indiretas.

2.6.1 Técnicas Específicas Conforme Artefatos

• Fusão32 (Espacial): artefatos que surgem durante o estágio de fusão da face gerada
à imagem original de fundo. Métodos baseados em detecção de bordas, medidas de
qualidade e análise de frequência.

• Ambiente33 (Espacial): artefatos relacionados à inconsistência entre o conteúdo
gerado e o original podem ocasionar anomalias indicando conteúdo gerado, como
resíduos relativos a processos de transformações geométricas34, iluminação e variação
de fidelidade. Em geral, esse tipo de artefato é identificado, usando CNN para
comparar regiões de objeto e fundo ou usando ED para codificar partes da face e
contexto e alimentar um classificador com a diferença entre essas codificações e a
codificação de toda a imagem.

• Análise Forense35 (Espacial): marcas únicas, padrões sutis como impressões digitais
são deixados por GAN, detectáveis mesmo na presença de compressão e ruído. Nesse
sentido, métodos baseados na análise da diferença entre o padrão de frequência de
uma câmera pode ser usado para detecção de conteúdo falso colado. Outros métodos
concentram-se nos resíduos, usando redes ED para codificar a imagem original e
uma versão melhorada por bancos de filtros como o LoG36, que alimentam uma
LSTM, responsável por classificar uma sequência de vídeo a partir de quadros. Outras
abordagens focam-se em imperfeições, em vez de resíduos, usando redes neurais

30 https://ai.facebook.com/datasets/dfdc/
31 https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018
32 Blending
33 Environment
34 Warping
35 Forensics
36 Laplacian of Gaussian

https://ai.facebook.com/datasets/dfdc/
https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018
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para enfatizar os ruídos e suprimir imperfeições, como um pré-processamento para o
classificador.

• Comportamento37 (Temporal): padrões e anomalias no comportamento de algum
alvo podem ser identificados e modelados a partir de grandes quantidades de dados
em vídeos gravados. Outra abordagem sem vídeos de referência é buscar discrepâncias
entre medidas sobre emoções extraídas das sequências de áudio e vídeo, usando redes
Siamesas.

• Fisiologia (Temporal): o fato de que conteúdo gerado é destituído de sinais fisiológi-
cos tem fomentado o surgimento de técnicas de detecção de Deepfake bem sucedidas,
baseadas na monitoração de frequência cardíaca, pulso e padrões irregulares no piscar
de olhos.

• Sincronização (Temporal): quando a sincronização em ataques com vídeos dublados
é explorada, evidenciam-se inconsistências ao correlacionar a fala aos pontos fiduciais
em torno da boca ou mesmo entre visemas (formato da boca) e fonemas falados, em
particular aqueles em que a boca está totalmente fechada.

• Coerência (Temporal): artefatos decorrentes de incoerência temporal podem indicar
a presença de conteúdo falso, por exemplo, usando uma RNN ou LSTM para detectar
efeitos de flicker e jitter na região da face, monitorando o fluxo óptico ou estimando
o erro de reconstrução do próximo frame por uma LSTM.

2.6.2 Abordagens Indiretas

Alternativamente, nesta categoria de estratégias, redes neurais são encarregadas de
encontrar as características relevantes para análise, seguindo basicamente duas abordagens.

• Classificação: arquiteturas baseadas em CNN têm sido usadas efetivamente para
detectar vídeos Deepfake, como redes Siamesas treinadas sobre exemplos de imagens
reais e falsas. Na arquitetura de Redes de Memórias Hierárquicas38(HMN ), a região
de face é codificada e processada por uma GRU bidirecional com um mecanismo de
atenção. Um módulo de memória compara esse encoding aos vistos recentementes em
memória e realiza uma predição. Ensembles de classificadores usando CNN produzem
resultados mais robustos e redes CNN 3D que realizam convoluções espaço-temporais
sobre múltiplos frames superam os métodos de detecção por frames individuais.

• Detecção de Anomalias: nessa abordagem, redes neurais são treinadas em dados
reais e usadas em produção para detectar Deepfake como anomalias. Isso pode ser

37 Behavior
38 Hierarchical Memory Network
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alcançado, medindo-se as ativações de uma rede para reconhecimento de faces, em vez
de analisar pixels brutos. Em outra abordagem, redes do tipo VAE são treinadas para
reconstruir imagens reais. Anomalias são detectadas computando o Erro Quadrático
Médio (MSE) entre os componentes médios da imagem codificada e da imagem
reconstruída. Também é possível comparar imagens de entrada com imagens reais
projetadas no espaço latente por uma rede ED.

2.7 Alguns Datasets e Benchmarks em Manipulação de Imagens

Algumas bases de dados e respectivos benchmarks são listadas na Tabela 4, onde
constata-se uma ampla gama de técnicas de manipulação digital de imagens de faces, em
particular o Deepfake.

Tabela 4 – Datasets.
Dataset Origem Videos Técnica de geração Referência

Celeb-DF Youtube 5.639 Basic Deepfake Maker (LI et al., 2020)
DeepForensics-1.0 Youtube 60.000 DF-VAE (JIANG et al., 2020)
WildDeepfake Youtube 707 Encoder-Decoder (ZI et al., 2020)
FaceForensics++ Youtube 1.000 Deepfakes, FaceSwap, Face2Face e NeuralTextures (ROSSLER et al., 2019)
DFDC Preview Actors 4.119 Unknown (DOLHANSKY et al., 2019)
UADFV Youtube 49 FakeApp (LI; CHANG; LYU, 2018)
Deepfake Dataset Internet 19.456 Deepfake (AFCHAR et al., 2018)

Fonte: Elaborada pelo autor.

2.8 O Estado da Arte

Segundo Weerawardana and Fernando (2021), até a presente data, não há um
método preciso para detecção de Deepfake, não obstante o progresso de métodos baseados
em Deep Learning. Apresentamos o estado da arte em detecção de Deepfake, nas modali-
dades de Reconstituição e Substituição, exibindo os resumos recentemente publicados nos
levantamentos de Mirsky and Lee (2021) e Tolosana et al. (2020), nas Figuras 8, 7 e 9.

Além desses e outros trabalhos listados em levantamentos e revisões na literatura,
vale salientar o destaque que os primeiros colocados no desafio Deepfake Detection Challenge
- DFDC 39, promovido pela Meta, têm recebido quando usados como referência, tal qual
um benchmark. Em particular, Coccomini et al. (2022) empregaram o poder dos ViT, ou
Transformers Visuais40, combinados com a rede EfficientNetB0 e reportaram resultados
comparáveis aos de Das et al. (2021), o primeiro trabalho colocado naquele desafio.

39 https://ai.facebook.com/datasets/dfdc/
40 ViT: Visual Transformers

https://ai.facebook.com/datasets/dfdc/
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A despeito da acurácia desses modelos, índices de desempenho sobre latência e
memória também devem ser considerados dentre os critérios para seleção de modelos
candidatos à implantação em dispositivos com recursos limitados.

Figura 5 – Comparação de métodos estado da arte para detecção Deepfake usando ViT e
EfficientNet.

Fonte: (COCCOMINI et al., 2022).

Como mostrado na Figura 5, o menor dos modelos para detecção de Deepfake, nessa
comparação, chega a um total de 89 milhões de parâmetros (COCCOMINI et al., 2022). A
complexidade do modelo medida em número de parâmetros treináveis sugere a quantidade
mínima necessária de memória de GPU. A memória total alocada pode ser estimada pela
quantidade de memória necessária para o número de parâmetros de um modelo e para o
processamento de dados em lote. Durante a inferência, computações intermediárias para
ativações e mapas de características41 demandam grande quantidade de memória, o que
inviabiliza muitos modelos candidatos para implantação em dispositivos com memória
limitada (LIU et al., 2020). A complexidade em termos de custo computacional pode ser
medida não somente pelo número de FLOP42, ou multiplicações-adições (BIANCO et al.,
2018), mas também pelo custo de acesso à memória (MA et al., 2018), ou MAC 43.

41 feature maps
42 Floating-Point Operations
43 Memory Access Cost
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2.9 A arquitetura MesoNet

Na contramão dos modelos pesados, emerge o modelo denominado MesoNet proposto
por Afchar et al. (2018), figurando entre os métodos estado da arte na compilação de
Tolosana et al. (2020) (ver Figura 7 e Figura 8). Naquele trabalho, MesoNet é apresentada
em duas versões de arquitetura minimalista, a saber, Meso-4 e MesoInception-4 com
27.977 e 28.615 parâmetros treináveis respectivamente, reportando altas taxas de acerto de
detecção, ou seja, acima de 98% e 95% para as técnicas de geração denominadas Deepfake
e Face2Face.

Afchar et al. (2018) observaram que, por um lado, o processo de compressão degrada
o ruído em imagens oriundas de vídeos falsificados, inviabilizando a análise baseada em
ruído com características de baixo nível, a que se referem como microscópicas. Por outro
lado, a análise em nível macroscópcio, ou semântico, é extremamente desafiadora até
mesmo para olhos humanos, em particular para imagens de rosto. Considerando o exposto,
aqueles autores propuseram um método de análise em nível intermediário, isto é, a análise
em nível mesoscópico, mediante uma rede neural profunda, mas com número reduzido
de camadas: a arquitetura MesoNet. As arquiteturas representadas na Figura 6 foram
reportadas nesse estudo como as que obtiveram melhor desempenho para a tarefa de
classificação de imagens falsas, a partir da simplificação gradual de arquiteturas mais
complexas, sob a restrição de manter o mesmo desempenho.

Em sua versão básica, ilustrada na Figura 6(a), a Meso-4 é constituída por quatro
blocos com camadas de convolução e um bloco com camadas densas, usando a função
de ativação ReLU para introduzir não-linearidade às transformações, Normalização em
Batch44 para mitigar o Desaparecimento do Gradiente45 e Dropout como estratégia de
regularização, a fim de evitar o superajuste46 do modelo.

No mesmo trabalho, Afchar et al. (2018) propuseram a arquitetura alternativa
denominada MesoInception-4 (Figura 6(b)), substituindo os dois primeiros blocos de
camadas convolucionais da arquitetura básica por uma variante do bloco conhecido como
Inception, originário da InceptionNet (SZEGEDY et al., 2015), com convoluções dilatadas47

de filtro reduzido, a fim de introduzir informação multiescala, evitando o nível semântico.
Neste estudo, ficou demonstrado que a substituição de mais de duas camadas pelo bloco
Inception não melhora o desempenho.

44 Batch Normalization
45 Vanishing Gradient
46 Overfitting
47 Dilated Convolutions
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(a) (b)

Figura 6 – Arquiteturas MesoNet: (a) Meso-4 e (b) MesoInception-4.

Fonte: (AFCHAR et al., 2018).

Figura 7 – Comparação entre métodos estado da arte de detecção Deepfake por Reconsti-
tuição.

Fonte: (TOLOSANA et al., 2020).
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Figura 8 – Comparação entre métodos estado da arte de detecção Deepfake por Substitui-
ção.

Fonte: (TOLOSANA et al., 2020).
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Figura 9 – Comparação entre métodos estado da arte de detecção Deepfake por Reconsti-
tuição.

Fonte: (MIRSKY; LEE, 2021).
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2.10 A arquitetura MesoNet e as Abordagens Híbridas em Inteligência Artificial

As vantagens e desvantagens das abordagens de Visão Computacional com Aprendi-
zagem de Máquina Clássica e de Aprendizagem Profunda são bem conhecidas. Os modelos
de Aprendizagem Profunda costumam produzir resultados com maior acurácia, além de
serem muito versáteis. Entretanto, esses modelos demandam recursos computacionais de
alto custo (WALSH et al., 2019) e, em sua maioria, são modelos do tipo caixa-preta (MOL-
NAR, 2022), representando um desafio, no que diz respeito a sua Interpretabilidade48. Os
métodos de Visão Computacional Clássicos, por sua vez, geralmente são constituídos por
modelos caixa-branca (transparentes) otimizados para desempenho e eficiência energética.

Abordagens híbridas combinam Visão Computacional Clássica e Aprendizagem
Profunda, explorando os pontos fortes de ambas e têm demonstrado a capacidade de
melhorar o desempenho de métodos de Visão Computacional Clássica e lidar com problemas
não apropriados para Aprendizagem Profunda (WALSH et al., 2019).

Figura 10 – Módulo de Pré-processamento sobre a entrada para a Meso-4.

Fonte: (Xia et al., 2022).

Seguindo essa vertente e combinando técnicas específicas com abordagens indiretas
detalhadas na Seção 2.6, Xia et al. (2022) propuseram uma adaptação à MesoNet, conforme
Figura 10, acoplando a esta um módulo de pré-processamento para remover componentes
de baixa frequência, retendo altas frequências, haja vista a perda de informação nas
características da imagem em consequência dos algoritmos de compressão de vídeo. De
acordo com esse estudo, o método foi extensivamente testado sobre as bases de dados
FaceForensics++ e Celeb-DF, superando outros métodos estado da arte sobre esta última
base de imagens.

Em suma, o módulo de pré-processamento na proposta de Xia et al. (2022) é
composto pela detecção de faces presentes na imagem de entrada, seguidas de uma filtragem
48 Interpretability ou Explainability
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passa-alta, com o objetivo de manter a informação com alto poder discriminatório de
textura, a partir da observação de que, em geral, a área do rosto é suave em imagens de
face produzidas por Deepfake. Para tanto, o seguinte operador foi definido:

pi,j =
√

(mi,j −mi+1,j)2 + (mi,j −mi,j+1)2 (2.3)

onde, i ∈ 1, . . . , H, j ∈ 1, . . . ,W , mi,j são os valores dos pixels na imagem original, pi,j

são os valores dos pixels na imagem processada, H e W representam altura e largura da
imagem, respectivamente.

Como resultado do pré-processamento, em áreas suaves na imagem, a diferença entre
pixels será pequena, enquanto a diferença será grande em áreas fortemente texturizadas.

Motivado pela observação de que a Equação 2.3 é similar à aproximação de um
operador diferencial, no presente trabalho foi proposta a exploração de um dos operadores
diferenciais conhecidos na literatura de Processamento de Imagens e Visão Computacional,
que exerça função similar e produza resultados competitivos ou superiores.
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3 DESENVOLVIMENTO: MATERIAIS E MÉTODOS

Neste capítulo, serão descritos o método e as arquiteturas propostas, discutidos os
critérios para a escolha da base de dados para treinamento e teste dos modelos, listadas
as métricas de avaliação dos modelos em termos de taxas de acerto e erro, bem como
desempenho no dispositivo móvel. Ainda, serão apresentadas as tecnologias utilizadas para
o desenvolvimento deste trabalho e os resultados obtidos.

3.1 Introdução

O objetivo de estudar e adaptar arquiteturas viáveis para dispositivos com restrições
de recursos de hardware, detalhado no Capítulo 1, o sucesso de abordagens híbridas de Visão
Computacional e Aprendizagem Profunda, aliados aos resultados promissores reportados
sobre a arquitetura Meso-4 (AFCHAR et al., 2018) e sua variante (Xia et al., 2022),
motivaram a consideração da arquitetura Meso-4 como forte candidata em resposta à
questão de pesquisa enunciada neste trabalho.

Baseado na observação de que o operador proposto por Xia et al. (2022) e definido
na Equação 2.3 assemelha-se à aproximação de um operador diferencial por diferenças de
primeira ordem, conjecturamos:

Conjectura 3.1.1 Operadores diferenciais que atuam como detectores de bordas podem
oferecer resultados equivalentes ou melhores que o operador proposto por Xia et al. (2022).

Em Processamento Digital de Imagens, o operador Gradiente é conhecido justa-
mente pela propriedade de enfatizar altas frequências, sendo aproximado por diferenças
discretas de primeira ordem em algoritmos de detecção de bordas baseados em gradi-
ente (JÄHNE, 2002). Diversos algoritmos para aproximação desses operadores foram
propostos, amplamente conhecidos como detectores de bordas, tais como os filtros de
Roberts, Canny, Prewitt e Sobel (GONZALES; WINTZ, 1987).

Conforme a aplicação, esta propriedade do operador Gradiente apresenta vantagens
e desvantagens. Por um lado, Petrou and Petrou (2010) apontam a inadequação de máscaras
de Sobel para detecção de bordas em imagens com altos níveis de ruído, sugerindo o poder
de ênfase que o operador de Sobel tem sobre conteúdo com altas frequências, tais como
texturas, o que é plenamente adequado para os propósitos deste trabalho. Por outro lado,
Ye et al. (2022) propuseram a DuFeNet, uma arquitetura de rede neural convolucional,
que emprega a informação de gradiente para aprender características de bordas para a
tarefa de classificação de imagens. O bloco Ramo de Gradiente, recebe a saída do filtro de
Sobel como entrada, que é processada por quatro camadas convolucionais e concatenada
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com a saída do Ramo de Textura. Esse trabalho concluiu que o gradiente aumenta o viés
de forma e melhora as habilidades de aprendizagem do modelo, como estratégia para
abordar o viés de textura em CNN, apontado em (GEIRHOS et al., 2018).

Saliente-se que Kong et al. (2021) contestaram a conclusão do trabalho de Geirhos
et al. (2018) com evidências experimentais de que redes convolucionais não possuem
intrinsicamente viés de textura ou forma, o que pode mudar com o viés interno dos dados.
Kong et al. (2021) mostraram também que as CNN obtêm seu conhecimento de forma
preguiçosa, no sentido de obter conhecimento de alto nível (forma) somente quando o
conhecimento de baixo nível (textura) não for suficiente para satisfazer os requisitos da
tarefa.

Diante do exposto, propomos um método para investigação de arquiteturas nas
próximas seções, que integrem o conhecimento sobre o Gradiente, provendo suporte
experimental para a Conjectura 3.1.1.
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3.2 Método Proposto

Nesta seção, a utilização do operador Sobel, como primeira camada não-treinável
na arquitetura Meso-4 é proposta, seguindo a abordagem híbrida de Visão Computacional
e Aprendizado Profundo, discutida anteriormente.

A Figura 11 fornece indícios perceptuais que suportam a Conjectura 3.1.1, haja
vista a similaridade visual entre os resultados da aplicação do operador de Sobel e o
resultado do operador de Xia et al. (2022), mostrado na Figura 10.

(a) (b) (c)

(d) (e) (f)

Figura 11 – Aplicação do Filtro de Sobel. A região de face na imagem falsa é mais suave,
enquanto a região de face na imagem real é mais texturizada. O filtro de
Sobel enfatiza essas diferenças. (a) Imagem real original. (b) Componente
horizontal x da filtragem pelo Operador de Sobel sobre a imagem real. (c)
Componente vertical y da filtragem pelo Operador de Sobel sobre a imagem
real. (d) Imagem falsa original. (e) Componente horizontal x da filtragem
pelo Operador de Sobel sobre a imagem falsa. (f) Componente vertical y da
filtragem pelo Operador de Sobel sobre a imagem falsa.

Fonte: Elaborado pelo autor.

Em processamento de imagens, a magnitude do gradiente é usada para implementar
derivadas de primeira ordem. Considere uma imagem I(x, y), seu gradiente definido como
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o campo vetorial (GONZALES; WINTZ, 1987):

∇I =
Gx

Gy

 =
 ∂I

∂x
∂I
∂y

 (3.1)

e a magnitude do gradiente:

∇I =
∥∥∥∇I∥∥∥ =

[
G2

x +G2
y

] 1
2 =

[(
∂I

∂x

)2

+
(
∂I

∂y

)2] 1
2

(3.2)

Analogamente, a Magnitude do Gradiente de Sobel sobre imagens é definida como:

G =
√
G2

x +G2
y (3.3)

onde o operador de Sobel calcula as componentes Gx e Gy da derivada de primeira ordem
da imagem I(x, y) pelas aproximações:

Gx =


-1 -2 -1
0 0 0
1 2 1

 ∗ I(x, y) Gy =


-1 0 1
-2 0 2
-1 0 1

 ∗ I(x, y) (3.4)

Observe que o filtro da magnitude de Sobel é uma combinação não-linear dos
operadores de Sobel nas direções x e y.

O framework Tensorflow, atualmente em sua versão 2.8.2, oferece uma implementa-
ção para Sobel em seu pacote para tratamento de imagens, a saber tf.image.sobel_edges1.
O uso desse operador para a construção de uma camada e seu acoplamento à arquitetura
Meso-4 será detalhado na Seção 3.6.

1 https://www.tensorflow.org/api_docs/python/tf/image/sobel_edges

https://www.tensorflow.org/api_docs/python/tf/image/sobel_edges
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3.3 Arquiteturas

Para integrar o bloco Sobel à rede Meso-4, foram propostas três arquiteturas,
ilustradas nos diagramas da Figura 12. Na figura, veem-se as representações das três redes
convolucionais projetadas e estudadas, suas componentes, entradas e saídas. O acoplamento
do bloco Sobel à (a) rede original Meso-4 foi arquitetado em três configurações distintas,
são elas: (b) como camada inicial, (c) como camada somada à entrada e (d) como camada
concatenada à entrada.

Figura 12 – Arquitetura Meso-4 e arquiteturas propostas incorporando a camada Sobel.
Da esquerda para a direita, (a) Meso-4: arquitetura original, (b) Arquitetura
MesoNetSobel: camada Sobel na entrada da rede, (c) MesoNetSobelAdd:
camada Sobel somada à entrada da rede, (d) MesoNetSobelConcat: camada
Sobel concatenada à entrada da rede.

Fonte: Elaborado pelo autor.
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3.4 Dados

Algumas das bases de dados mais populares na literatura foram listadas na Tabela 4,
da Seção 2.7, revelando a ampla variedade em termos de origem de conteúdo, quantidade
de vídeos e diferentes técnicas de falsificação.

Para a escolha da base de dados a ser usada no presente trabalho, os seguintes
critérios foram considerados:

• tamanho;

• facilidade de acesso;

• licença;

• tempo estimado para treinamento, validação e teste;

• recursos oferecidos pelo serviço de hospedagem e execução em nuvem disponível
durante este estudo.

Apesar da imensa maioria das bases de dados serem passíveis de liberação para
pesquisa no âmbito acadêmico e sem fins lucrativos, mediante solicitação formal via
cadastro, identificação do solicitante e sua instituição, esse processo pode tornar-se um
tanto burocrático, demorado e com nuances, por vezes, restritivas. A título de exemplo,
citamos a base de dados FaceForensics++, cujos autores liberam seu código sob a licença
MIT, porém mantêm seus dados sob um termo próprio de uso2, em que a cláusula 6
estabelece o seguinte termo:

If Researcher is employed by a for-profit, commercial entity, Researcher’s
employer shall also be bound by these terms and conditions, and Researcher
hereby represents that he or she is fully authorized to enter into this agreement
on behalf of such employer.

Analogamente, o acesso ao DFDC Preview, por sua vez, está condicionado à
abertura de uma conta AWS e aos próprios termos de uso, que inclui uma cláusula
semelhante à mencionada anteriormente:

If you are agreeing to be bound by the Agreement on behalf of your employer
or other entity, you represent and warrant to Facebook that you have full legal
authority to bind your employer or such entity to this Agreement. If you do
not have the requisite authority, you may not accept the Agreement or access
the Materials on behalf of your employer or other entity.

2 FaceForensics Terms of Use

https://kaldir.vc.in.tum.de/faceforensics_tos.pdf
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Obviamente, entre questões legais, estratégias de negócio e/ou interesses comerciais,
são diversas as razões pelas quais uma empresa pode oferecer objeções a tais condições e
eleger seu colaborador como representante, para apoiar seu projeto pessoal.

Considerando o exposto, assim como os extensivos testes da arquitetura Meso-4
com bases de dados como as supracitadas nos estudos de Afchar et al. (2018) e Xia et al.
(2022), limitamos o escopo deste estudo à comparação de desempenho entre o modelo de
base Meso-4 e as arquiteturas aqui propostas incluindo o bloco Sobel para o problema
de detecção de imagens falsificadas por técnicas de Deepfake. Para tanto, optou-se pela
base de dados Deepfake Dataset3, criada por Afchar et al. (2018) para o trabalho de
desenvolvimento da Meso-4.

Essa base pode ser considerada pequena em tamanho, com 19.456 imagens ocupando
cerca de 184Mb em arquivo compactado, com acesso via link para download direto, sem a
necessidade de cadastro ou identificação, com código e base de dados liberados sob a licença
permissiva Apache 2.04. Com essa base de dados, os tempos para treinamento, validação e
teste nas máquinas virtuais equipadas com GPU da plataforma em nuvem Google Colab
Pro, somam cerca de duas horas e meia. Esse tempo pode ser considerado razoável para
os propósitos de investigação das diversas configurações de arquitetura propostas neste
trabalho.

Amostras reais e falsas dessa base de imagens são mostradas na Figura 13.

(a) (b)

Figura 13 – Amostras (a) Reais e (b) Falsas da Base de Dados Deepfake Dataset usadas
para treinamento, validação e teste dos modelos estudados neste trabalho.

Fonte: Elaborado pelo autor.

A referida base foi construída a partir de vídeos gerados por Deepfake em diversos
3 https://github.com/DariusAf/MesoNet
4 Apache License 2.0

https://github.com/DariusAf/MesoNet
https://www.apache.org/licenses/LICENSE-2.0
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níveis de compressão, com duração de 2 segundos a 3 minutos e resolução (contagem
de pixels) mínima de 854 × 480 pixels, coletados de diferentes plataformas na internet,
buscando um balanceamento entre níveis de qualidade de resolução diferentes. A base
é constituída por 19.456 recortes quadrados de face de dimensões variadas, totalizando
220Mb. A quantidade de imagens, assim como a divisão empregada para os subconjuntos
de Treinamento, Validação e Teste são detalhadas na Tabela 5.

Tabela 5 – Deepfake Dataset.

Classe Treinamento Validação Teste
Real 7.416 1.854 2.238
Falsa 5.036 1.259 1.693

Fonte: Elaborada pelo autor.

Com respeito à Aumentação de Dados5, visando à reprodutibilidade do original
e sua comparação a nossa arquitetura, seguiu-se a mesma estratégia adotada naquele
trabalho (AFCHAR et al., 2018), isto é, um pipeline composto por módulos com variações
de 20% em zoom, variações de 15 graus em orientação, flip horizontal, variações de 20%
em brilho, deslocamento de canais para variações de cor, além da normalização usual no
intervalo [0, 1].

5 Data Augmentation
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3.5 Métricas para Avaliação Experimental

Detecção de Deepfake é um problema típico na categoria de tarefas de classificação
binária e, como tal, foi avaliado com métricas clássicas, definidas sobre a Matriz de
Confusão (Tabela 6), tais como Acurácia Binária6 (Eq. 3.5), Precisão7 (Equação 3.6),
Revocação8 (Equação 3.7) e F1-score (Equação 3.8). A Área Sob a Curva (AUC)9 ROC 10

também foi empregada nessa avaliação.

Tabela 6 – Definição da Matriz de Confusão.

Predição
Positivo Negativo

Real
Positivo VP FN
Negativo FP VN

Fonte: Elaborada pelo autor.

Acc = V P + V N

V P + V N + FP + FN
(3.5)

Prec = V P

V P + FP
(3.6)

Rec = V P

V P + FN
(3.7)

F1 = 2× Prec×Rec
Prec+Rec

(3.8)

6 Binary Accuracy
7 Precision
8 Recall
9 Area Under the Curve
10 Receiving Operating Characteristic
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3.6 Tecnologias Utilizadas

Conforme ilustração na Figura 14, os métodos aqui descritos foram implementados
com a linguagem Python em notebooks do tipo Jupyter, hospedados pelo serviço Google
COLAB PRO e executados em suas máquinas virtuais equipadas com GPU. O framework
denominado Tensorflow, versão 2.8.2, com API de alto nível Keras foi usado para escrever
todo o código implementando os modelos, o arcabouço para treinamento, a validação e
teste. Empregou-se o Tensorboard para monitoramento das seções de treinamento em
tempo real. Todos os experimentos foram registrados e rastreados por meio da plataforma
MLflow integrada a um servidor remoto no DagsHub.

Figura 14 – Tecnologias utilizadas: linguagem Python, Google COLAB PRO, Tensorflow
2.8.2, Keras, Tensorboard, MLflow e DagsHub.

Fonte: Elaborado pelo autor.

MLflow é uma plataforma de código aberto para gerenciamento de ciclos de vida
de ponta-a-ponta em Aprendizagem de Máquina, incluindo os estágios de experimentação,
reprodutibilidade, implantação e registro central de modelo (ZAHARIA et al., 2018). Apesar
dos benefícios dessa ferramenta, sua (i) complexidade de configuração de servidor remoto,
eventualmente com controle de acesso, (ii) os custos de serviços de nuvem, (iii) a falta
de flexibilidade de sua interface gráfica para comparação de métricas e parâmetros entre
experimentos ou exibição de diversos gráficos na mesma página e (iv) os inconvenientes
que se impõem para compartilhar o estado de um projeto, como repositório, servidor, e
especificação de um experimento estão entre as principais lacunas no MLflow (LOUSKY,
2021).

DagsHub é uma plataforma web baseada em ferramentas de código aberto, otimizada
para Ciência de Dados, que pode ser integrada ao MLflow, com configuração mínima e
preenchendo aquelas lacunas, além de servir como repositório de código, pipeline de dados
e todos os experimentos do MLflow (LOUSKY, 2021).
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A implementação de modelos seguiu a API Imperativa do Tensorflow (TUNG,
2021), também conhecida como API de Derivação de Classes11, recomendada em sua
documentação para aplicações em que se faz necessário o desenvolvimento de modelos cus-
tomizados. Como linhas de base12, essa implementação explorou (i) parte do código oficial13

do repositório de Afchar et al. (2018) e (ii) parte do código não-oficial14 disponibilizado
no repositório de Agarwal (2021).

Por um lado, o código em (i) implementa blocos, ou conjuntos de camadas e o
próprio modelo Meso-4, seguindo vagamente a API Imperativa, pois não se encontra em
plena conformidade com o padrão recomendado pela documentação do Tensorflow 2,
uma vez que não inclui o método CALL(). Esse código implementa algumas funções para
a geração da base de imagens, mas não disponibiliza um arcabouço para treinamento e
avaliação. Por outro lado, o código em (ii) implementa um arcabouço para treinamento
e avaliação, no entanto emprega a API Funcional, reproduzindo apenas a arquitetura
original.

Isto posto, foram necessárias reimplementações, modificações e refatorações de
código para obter-se uma implementação do modelo original Meso-4 descrito em (AFCHAR
et al., 2018), usando a API Imperativa do Tensorflow 2, que permitisse facilmente sua
customização para consequente derivação das arquiteturas propostas no presente estudo,
como ilustrado em trechos de código na Figura 15, bem como logging de métricas e
parâmetros para rastreamento dos experimentos no MLflow.

11 Layers and Models Subclassing
12 baselines
13 https://github.com/DariusAf/MesoNet
14 https://github.com/MalayAgr/MesoNet-DeepFakeDetection

https://github.com/DariusAf/MesoNet
https://github.com/MalayAgr/MesoNet-DeepFakeDetection
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(a)

(b)

Figura 15 – Trechos do código implementado, usando a API Imperativa do Tensorflow
2. (a) Classe para o modelo MesoNetSobelConcat, um dos modelos propostos,
derivado do modelo Meso-4, (b) Classe para o Bloco Sobel.

Fonte: Elaborado pelo autor.

3.7 Configurações e Treinamento

As rodadas de treinamento foram realizadas em até 50 épocas, com a opção de
parada antecipada15, após uma espera com paciência16 de 10 épocas sem melhoria na
métrica Acurácia Binária, usada para monitorar a convergência no treinamento do modelo.
Para avaliação do modelo treinado, foi separado um conjunto de teste com 20% do total de
exemplos da base de dados. O restante foi dividido na proporção 80/20 entre treinamento
e validação, respectivamente.

O processo de otimização foi executado com lotes17 de 64 amostras, sobre a função
de perda Entropia Cruzada Binária18 pelo algoritmo ADAM em sua configuração padrão
de parâmetros, isto é, β1 = 0.9 e β2 = 0.999, partindo de uma taxa de aprendizagem19

15 Early Stopping
16 Patience
17 Batches
18 Binary Cross Entropy
19 Learning Rate
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inicial de 0.001, com cronograma20 de redução definido como Decaimento Exponencial21

com uma taxa de decaimento22 de 0.10 a aproximadamente cada 2400 iterações23.

Os experimentos e rodadas de treinamento foram rastreados pela plataforma
de gerenciamento de ciclos de vida em Aprendizado de Máquina MLflow24 no servidor
remoto DagsHub25. Uma visão do painel no MLflow é exibida na Figura 16, demonstrando
a facilidade proporcionada por essa ferramenta para o acompanhamento de tempo de
treinamento, anotação automática dos resultados das métricas de avaliação em teste e
comparação lado a lado entre rodadas com modelos e configurações diferentes.

Figura 16 – MLflow Dashboard: rastreamento de experimentos.

Fonte: Elaborado pelo autor

Pelas curvas de treinamento na Figura 18, observam-se instabilidades durante a
validação para épocas na porção média do período de treinamento. No entanto, nota-
se convergência no final de cada período, sem aparente ocorrência de superajuste26 do
modelo. Observe que a lacuna entre as curvas de aprendizagem em treinamento e validação
não aumenta no final da rodada de treinamento. Ainda, constata-se visualmente que o
treinamento para a arquitetura MesoNetSobelConcat discorreu de forma mais estável que
as demais, durante os processos de validação.

20 Schedule
21 Exponential Decay
22 Decay Rate
23 Decay Steps
24 https://mlflow.org/
25 https://dagshub.com
26 Overfitting

https://mlflow.org/
https://dagshub.com
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Figura 17 – DagsHub.

Fonte: Elaborado pelo autor.

(a) (b)

(c) (d)

Figura 18 – Curvas de Treinamento para os modelos comparados. (a) Meso-4, (b)
MesoNetSobel, (c) MesoNetSobelAdd, (d) MesoNetSobelConcat.

Fonte: Elaborado pelo autor.



65

3.8 Resultados

Nesta seção, são apresentados resultados de medições de desempenho em termos
de taxas de acerto e erro, bem como desempenho em termos de velocidade de inferência e
memória consumida no dispositivo.

3.8.1 Estudo de Ablação

No contexto da avaliação de Redes Neurais Artificiais, Estudos de Ablação se
referem à avaliação de desempenho de modelos de Inteligência Artificial, estimando a
contribuição individual de componentes, mediante sua remoção (MEYES et al., 2019).

No presente estudo, os resultados reportados na Tabela 7 foram obtidos por meio
de um Estudo de Ablação, assim como no trabalho de Xia et al. (2022), avaliando
a contribuição do bloco Sobel para a melhoria da arquitetura Meso-4 em diferentes
configurações. O desempenho das configurações é avaliado em termos de níveis de acerto
e erro, traduzidos nos valores observados para as métricas definidas sobre a tabela de
Confusão.

Tabela 7 – Resultados: Estudo de Ablação comparando a contribuição do bloco Sobel
sobre a Meso-4 em diferentes configurações.

Arquitetura Acurácia Precisão Revocação F1-Score AUC
Meso-4 0, 937 0, 931 0, 962 0, 946 0, 986

MesoNetSobel 0, 944 0, 949 0, 954 0, 951 0, 986
MesoNetSobelAdd 0, 955 0, 963 0, 959 0, 961 0, 989

MesoNetSobelConcat 0,961 0,962 0,971 0,966 0,991

Fonte: Elaborada pelo autor.

3.8.2 Resultados de Desempenho no Dispositivo

Além do critério de desempenho em termos das métricas de avaliação definidas
sobre a Matriz de Confusão, para atender a questão de pesquisa enunciada na Seção 1,
os modelos candidatos devem satisfazer outrossim critérios objetivos que viabilizem sua
implantação27 em dispositivos embarcados ou móveis, portanto com restrições de recursos
de hardware.

Para tanto, o modelo foi devidamente convertido para um formato compatível com a
runtime do TensorFlow Lite, ou TFLite, responsável por executar operações de inferência
com o modelo no ambiente do Android. Ainda, o TFLite disponibiliza ferramentas que
implementam técnicas de compressão de modelo, como Quantização e Poda28. O emprego
27 Deployment
28 Pruning
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destas técnicas pode diminuir o tamanho do modelo em Mb, ou mesmo em número de
parâmetros, tornando-o eventualmente mais rápido. Estas técnicas não foram exploradas
neste estudo.

A seguir, com o modelo convertido, avaliou-se o mesmo por meio de uma ferramenta
de Benchmark, disponibilizada pelo TFLite. Trata-se de uma ferramenta binária nativa
para execução em linha de comando, para estimar:

• tempo de inicialização;

• tempo de inferência no estado de aquecimento29;

• tempo de inferência em operação estável;

• uso de memória durante o tempo de inicialização;

• memória total usada.

A Figura 19 exibe a captura de tela do terminal em que a ferramenta de Benchmark
do TFLite foi executada. Os dados relevantes da saída dessa ferramenta foram organizados
na Tabela 8.

O modelo convertido foi testado num dispositivo telefone celular, da marca Motorola,
modelo Edge 20 Lite, com Android 11. Todos os tempos são medidos em microssegundos
e correspondem aos tempos de carregamento (Init), inicialização do modelo (Warmup) e
primeira inferência (First). O tempo Inference (avg) diz respeito ao tempo médio de 50
rodadas de inferência. Memory (Mb) informa a variação no consumo de memória antes e
depois do modelo ter sido carregado e inicializado na memória RAM. O total de parâmetros
foi de 28.289.

Tabela 8 – Benchmark do Modelo no Dispositivo - Algumas métricas relevantes para
avaliação da viabilidade de implantação do modelo considerado em produto.

Model: MesonetSobelConcat - Device: Motorola Edge 20 Lite - Android: 11
Timing (µs) - CPU

Memory (Mb)
Init First Warmup (avg) Inference (avg)

46, 296 86, 695 127, 116 108, 472 32.969

Fonte: Elaborada pelo autor.

A fim de diminuir o tamanho do modelo em número de parâmetros, tornando-
o mais leve, mais rápido e sem perda de acurácia, foi proposta e testada a variante
MesonetSobelConcatDSC, em que todas as camadas de Convolução foram substituídas
29 Warmup state
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Figura 19 – Saída da ferramenta de Benchmark do TFLite rodando num telefone celular
Motorola Edge 20 Lite com Android 11.

Fonte: Elaborada pelo autor.

por camadas do tipo Depthwise Separable Convolution. Esta camada, introduzida por
Chollet (2017), realiza convoluções independentes por canal do mapa de características
de entrada, seguidas de uma convolução 1× 1 ponto-a-ponto (CHOLLET, 2021). O total
de parâmetros da versão adaptada com as camadas Depthwise Separable Convolution foi
de 18.007. Os resultados do desempenho no dispositivo desta arquitetura modificada são
apresentados na Tabela 9.

Tabela 9 – Benchmark do Modelo com Depthwise Separable Convolution no Dispositivo -
Algumas métricas relevantes para avaliação da viabilidade de implantação do
modelo considerado em produto.

Model: MesonetSobelConcatDSC - Device: Motorola Edge 20 Lite - Android: 11
Timing (µs) - CPU

Memory (Mb)
Init First Warmup (avg) Inference (avg)

52, 328 71, 163 66, 499.6 70, 926.8 11, 89

Fonte: Elaborada pelo autor.
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4 ANÁLISE DE RESULTADOS

Nesta seção, são analisados e discutidos os resultados apresentados na Seção 3.8.

4.1 Taxas de Detecção

Os resultados reportados na Tabela 7 suportam a Conjectura 3.1.1. As taxas de
detecção são medidas mediante métricas usuais para problemas de classificação binária.
Observe que os valores medidos para todas as métricas, ou seja, Acurácia, Precisão,
Revocação, F1-Score e AUC para a arquitetura MesoNetSobelConcat superaram os valores
para as respectivas métricas observadas para a arquitetura básica Meso-4. Lembramos
que os valores medidos referem-se à detecção em nível de frame. Vale salientar que para
detecção de Deepfake em nível de vídeo, Afchar et al. (2018) testaram uma técnica de
agregação de frames, computando a média das predições ao longo do vídeo. Eles reportam
ter aumentado significativamente a taxa de detecção por meio dessa técnica.

Não obstante as observações supracitadas e tendo em vista as diversas fontes
de variação aleatória, testes estatísticos podem ser adaptados e usados para medir a
significância das diferenças entre métricas de desempenho de diferentes classificadores,
como ferramenta de comparação objetiva entre os mesmos (SALZBERG, 1997). A escolha
do teste deve ser criteriosa, levando em conta as diversas fontes de variação aleatória, a saber:
(i) seleção dos dados de teste, (ii) seleção dos dados de treinamento, (iii) aleatoriedade
intrínseca em algoritmos de otimização e (iv) erro aleatório de classificação (DIETTERICH,
1998). Para o problema em questão, o estudo meticuloso de Dietterich (1998) recomenda o
Teste de McNemar, quando os dados puderem ser processados uma única vez ou o Teste
t Pareado por Correlação-Cruzada 5× 2, caso contrário. Este último produz resultados
melhores e deveria ser priorizado sempre que possível.

Dada a quantidade de dados, optamos pelo Teste de McNemar (DIETTERICH,
1998) para validação estatística dos resultados obtidos, cujos resultados são mostrados na
Tabela 10. Considerando a hipótese nula H0 : µd = 0 e a hipótese alternativa H1 : µd 6= 0,
a partir do p-value = 0.00294, somos levados a rejeitar a hipótese H0, a um nível de
significância α = 0.05, donde concluímos que há evidências estatísticas de que o desempenho
de MesonetSobelConcat é superior ao desempenho de Meso-4.

Tabela 10 – Teste de McNemar - Validação Estatística dos Resultados.

χ2 p-value

8, 8430 0, 00294

Fonte: Elaborada pelo autor.
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4.2 Desempenho no Dispositivo

Conforme resultados apresentados na Seção 3.8.2, Tabela 8, o experimento com a
ferramenta de Benchmark TFLite resultou em um tempo médio por inferência de 108, 47
milissegundos. A detecção em nível de frame seria factível nesse tempo. Para a detecção
em nível de vídeo, uma subsequência de frames deveria ser considerada. Nesse caso, Xia
et al. (2022) sugerem amostrar aleatoriamente um em cada 20 frames seguidos, visto o
grande número de frames similares numa seqüência. Portanto, considerando uma típica
taxa média de 30 frames por segundo (FPS), para o tempo médio por inferência estimado,
seria viável e suficiente o processamento de um a cada quatro frames para classificar um
vídeo.

Conforme os resultados exibidos na Tabela 9 para a arquitetura modificada com
camadas Depthwise Separable Convolution MesonetSobelConcatDSC, com tempo médio
por inferência de 70, 93 milissegundos, um a cada três frames poderia ser processado.

No que diz respeito ao consumo de memória, os acréscimos de 32.97 Mb ou de
11, 89 Mb podem ser considerados isoladamente ínfimos em ambos os casos, se comparados
à capacidade de 6 Gb daquele aparelho. No entanto, a versão que ocupe menor espaço
preservando acurácia é preferível.

Algumas técnicas para elevar o nível de desempenho do modelo no dispositivo são
discutidas na Seção 5.2.
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5 CONCLUSÕES

A evolução das técnicas de manipulação de imagens digitais tem propiciado a
geração de resultados cada vez mais convincentes, com destaque para aquelas baseadas
em Redes Neurais e Aprendizagem Profunda, que tornam possíveis falsificações do tipo
Deepfake. A qualidade surpreendente de seus resultados, associada ao livre acesso a essa
tecnologia, tem despertado a atenção e o interesse de diversas comunidades.

Entretanto, os propósitos na utilização dessa tecnologia podem variar desde o
interesse profissional genuíno para serviços na indústria de entretenimento, como comédia
e cinema, até interesses excusos objetivando o ataque à reputação de indivíduos, por
meio de vídeos forjados de pornografia de vingança ou vídeos forjados com notícias falsas,
envolvendo autoridades ou figuras públicas.

Além disso, a capilaridade da rede mundial de computadores, aliada à profusão
e ubiquidade dos dispositivos móveis catalizam o processo de difusão de notícias falsas,
trazendo consequências preocupantes em todas as escalas da sociedade, desde o indivíduo
até a nação.

Neste trabalho foi proposta uma inovação incremental sobre a arquitetura Meso-4,
que reúne elementos que a favorecem como uma candidata possível para implantação em
produto. A inovação proposta inspirou-se em um trabalho anterior, que adaptava a rede
original, acoplando uma camada para extração de características baseadas em um operador
diferencial. Conjecturamos que operadores diferenciais usados para extração de contorno,
como o Filtro de Sobel, também melhorariam as taxas de acerto da arquitetura Meso-4.
Três configurações diferentes foram propostas e testadas em um Estudo de Ablação, cujos
resultados apontam para a superioridade da arquitetura MesoNetSobelConcat em relação
ao modelo de base, conforme todas as métricas de desempenho utilizadas.

Diante do exposto, a MesoNetSobelConcat pode ser considerada apta para a
execução da tarefa de detecção de Deepfake em dispositivos embarcados e/ou móveis.

5.1 Impactos

Os resultados apresentados na Seção 3.8 e discutidos na Seção 4 oferecem suporte
à Conjectura 3.1.1 e acenam para a viabilidade de desenvolvimento de ferramentas para
a rápida detecção de Deepfake no dispositivo, evitando os inconvenientes da falta de
conexão, latência e preocupações com violação de privacidade e segurança de dados. Tais
ferramentas contribuiriam para a atenuação da difusão de conteúdo prejudicial, mediante
recompartilhamentos, seja pelo desinteresse gerado após a descoberta da falsificação ou
mesmo por medidas judiciais que inibissem sua propagação.
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5.2 Trabalhos Futuros

Neste trabalho, a aproximação de um operador diferencial, conhecido como Filtro
de Sobel, foi utilizada como um bloco não-treinável em diferentes configurações nas
arquiteturas propostas, buscando enfatizar o conteúdo de altas frequências e favorecer a
distinção de superfícies texturizadas reais e forjadas.

5.2.1 Análise Multiescala

A melhoria introduzida pelo operador Filtro de Sobel sobre o desempenho do
modelo de base sugere que o uso de outros operadores, conhecidos em processamento
espacial e análise multiescala, poderiam beneficiar o desempenho da Meso-4.

Como perspectiva futura, a investigação de aperfeiçoamento da Meso-4 pode
incluir abordagens exploradas em trabalhos recentes, que reportam bons resultados para
tarefas de classificação semelhantes, empregando camadas com parâmetros treináveis
que implementam Wavelets. Luan et al. (2018) propuseram o modelo GCN - Gabor
Convolutional Networks, que incorporam a wavelet de Gabor para tornar o aprendizado de
características mais robusto às mudanças de orientação e escala, melhorando o desempenho
na tarefa de reconhecimento de objetos, com menos parâmetros treináveis. Alekseev
and Bobe (2019) criaram a GaborNet, usando a wavelet de Gabor como a primeira
camada com parâmetros treináveis em uma arquitetura baseada em CNN, mostrando que
qualquer rede convolucional poderia ser assim facilmente adaptada. Yuan et al. (2022)
propõem as redes neurais convolucionais adaptativas de Gabor, AGCN, em que os filtros
convolucionais são adaptativamente modulados pelos filtros de Gabor, construindo assim
os filtros convolucionais de Gabor, com parâmetros treináveis.

5.2.2 Outras Bases de Dados

A despeito do presente estudo ter limitado-se à base de dados Deepfake Data-
set, pelas razões discutidas na Seção 3.4, futuros trabalhos podem incluir outras ba-
ses como as constantes na Tabela 4, a fim de melhorar o poder de generalização do
MesonetSobelConcat para distribuições diferentes de Deepfake e até mesmo para outras
técnicas de manipulação de imagens de face.

5.2.3 Compressão de Modelo

No que tange à otimização do desempenho do modelo em produto, trabalhos futuros
podem (i) explorar operadores customizados para aceleradores do tipo GPU, assim como
(ii) técnicas de compressão de modelo, como Quantização e Poda.
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5.2.4 Aplicativos

Aplicativos de detecção de Deepfake em nível de frame para imagens estáticas
ou vídeo, contendo o modelo aqui apresentado para inferência no dispositivo, podem ser
desenvolvidos para sistemas Android e iOS.
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